Research of Function Optimization Algorithm
نویسندگان
چکیده
Traditional evolutionary algorithm trapped into the local minimum easily. Therefore, based on a simple evolutionary algorithm and combine the base ideology of orthogonal test then applied it to the population initialization, crossover operator, as well as the introduction of inver-over operator to prevent local convergence to form a new evolutionary algorithm. Through the series of numerical experiments, the new algorithm has been proved is efficiency for function optimization.
منابع مشابه
Optimal Design of a Brushless DC Motor, by Cuckoo Optimization Algorithm (RESEARCH NOTE)
This contribution deals with an optimal design of a brushless DC motor, using optimization algorithms, based on collective intelligence. For this purpose, the case study motor is perfectly explained and its significant specifications are obtained as functions of the motor geometric parameters. In fact, the geometric parameters of the motor are considered as optimization variables. Then, the obj...
متن کاملResearch of Blind Signals Separation with Genetic Algorithm and Particle Swarm Optimization Based on Mutual Information
Blind source separation technique separates mixed signals blindly without any information on the mixing system. In this paper, we have used two evolutionary algorithms, namely, genetic algorithm and particle swarm optimization for blind source separation. In these techniques a novel fitness function that is based on the mutual information and high order statistics is proposed. In order to evalu...
متن کاملResearch of Blind Signals Separation with Genetic Algorithm and Particle Swarm Optimization Based on Mutual Information
Blind source separation technique separates mixed signals blindly without any information on the mixing system. In this paper, we have used two evolutionary algorithms, namely, genetic algorithm and particle swarm optimization for blind source separation. In these techniques a novel fitness function that is based on the mutual information and high order statistics is proposed. In order to evalu...
متن کاملAdaptive Rule-Base Influence Function Mechanism for Cultural Algorithm
This study proposes a modified version of cultural algorithms (CAs) which benefits from rule-based system for influence function. This rule-based system selects and applies the suitable knowledge source according to the distribution of the solutions. This is important to use appropriate influence function to apply to a specific individual, regarding to its role in the search process. This rule ...
متن کاملOptimization of Fabric Layout by Using Imperialist Competitive Algorithm
In textile industry, marker planning is one of the main operations in the cutting fabric stage. Marker packing is usually used to maximize cloth exploitation and minimize its waste. In this research, a method is used based on new found meta-heuristic imperialist competitive algorithm (ICA) and Bottom-Left-Fill Algorithm (BLF) to achieve optimal marker packing. Function of the proposed method wa...
متن کاملA Hybrid Meta-Heuristic Algorithm based on Imperialist Competition Algorithm
The human has always been to find the best in all things. This Perfectionism has led to the creation of optimization methods. The goal of optimization is to determine the variables and find the best acceptable answer Due to the limitations of the problem, So that the objective function is minimum or maximum. One of the ways inaccurate optimization is meta-heuristics so that Inspired by nature, ...
متن کامل